(+) Prove the addition and subtraction formulas for sine, cosine, and tangent and use them to solve problems.

You are watching: Cos(a) + cos(b)

A common student misconception is that **sin(A + B) = sin A + sin B** and that the trig function can be “distributed” to the angle measures inside of the parentheses. I am going to start today’s lesson with that misconception and see if students can come to terms with it.

Students will be given the task worksheet and will be asked to investigate whether the statement **cos (A – B) = cos A – cos B** is true or false. I make sure to give them enough time to think about a few different ways to know that the relationship cos (A – B) = cos A – cos B is false. Students may find a counterexample to show that it is false, but I will press them to think of this at a more conceptual level. I”ll ask them to consider the Ferris wheel problem we studied earlier in the year to give them a different perspective on this relationship.

Task – Sum and Difference Formulas.docx

## Explore

20 minutes

Finding a Counterexample

Counterexample.png

To build momentum from the Launch, I”ll ask a few students to present their findings. I might start with a student who found a specific counterexample and have them show that the relationship does not work. Then, I”ll choose another student who thought about the relationship in a more general sense and have them explain their thinking. Students may talk about how the cosine value is the x-value of the angle and that it is not proportional to the angle measure. Students may also bring up the Ferris wheel and how the horizontal distance for every 20° interval is not constant.

See more: How Far Is Cincinnati From Louisville Kentucky From Cincinnati Ohio?

Now that students understand that cos(A – B) is not equal to cos A – cos B, we can work on finding the actual value. This is not an easy proof, so I am going to go through it with students. It is probably not a conclusion that most students could reach without a significant amount of scaffolding; however, it is worthwhile to prove these identities because I believe that it helps them retain this knowledge. Also, the formula has meaning to them and is not something that is simply assigned to be memorized.

To get things started, I draw this diagram and talk the class through how I am going to set up the problem. By this point, my students should be able to find the ordered pairs for all of the points. I”ll add points P and Q to the diagram first and then talk about how one could rotate arc length PQ clockwise until Q is at the point (1, 0). Then SR is the same length as PQ, so the distance between the points is the same. More on this in the video below.

Unable to display content. Adobe Flash is required.

Once the class realizes that PQ = RS, then I”ll ask them how to find those distances. After we set up the distance formula for both, it really becomes just an exercise in algebraic manipulation – the only identity they need to know is that sin2 x + cos2 x = 1. At this point I may choose to let them loose and see if they can simplify the problem fully.

See more: It Is Difficult And Sometimes Impossible To Purify Contaminated Groundwater.

With the derivation of the new formula completed, I will ask the class to find the cosine of 15° to demonstrate how the formula works.